

SECRETARY of TRANSPORTATION

SMART SCALE Round 3 Review
SMART SCALE and Other Policies Over Past Five Years

Summary

- Indirect Benefits of SMART SCALE
- Review of application intake, screening and validation
- Review of Cost Estimation and Program Performance
- Discussion of Analytical methods, scoring results, and possible process improvements

Policy Reforms Related to SMART SCALE

- The positive effects of full funding cannot be overstated
- 53 of 163 projects selected in Rd 1 (included in the FY 2017-2022 SYIP) had been partially funded projects in the previous year FY 2016-2021 SYIP
 - As of June 2015: \$1.49 Billion in total project costs
 - \$450 Million in identified allocations
 - As of June 2016: \$1.87 Billion in <u>fully funded</u> total project costs
 - \$1.05 Billion in leveraged funds
 - \$824 Million in SMART SCALE allocations

Well Known Examples:

- Rappahannock River Crossing SB (Fredericksburg): \$9.5M allocated
- Warrenton Interchange (Culpeper): \$1M allocated
- RTE 277 Widening (Staunton): \$6.7M allocated
- I-64 Widening from 295 to Exit 205 (Richmond): \$1.8M allocated

Changing how we track performance

- SMART SCALE Dashboard was launched in January 2017
- Changed how we track project development
 - 10 milestones in project development as opposed to just advertisement date
 - Track through project award to close gap between ad and award
 - Rules designed to encourage early start/finish
- What has been the impact?
 - Overall, milestones are being completed earlier
 - Localities struggle to meet targets

Changing how we track performance

Impact of business rule changes on performance

- Yellow but Completed On-Time
- Completed Late (>12 days or awarded late)

Changing how we track performance

Impact of business rule changes on performance
 Project on Development Time - SMART SCALE

SMART SCALE projects scheduled to award through June 30, 2019

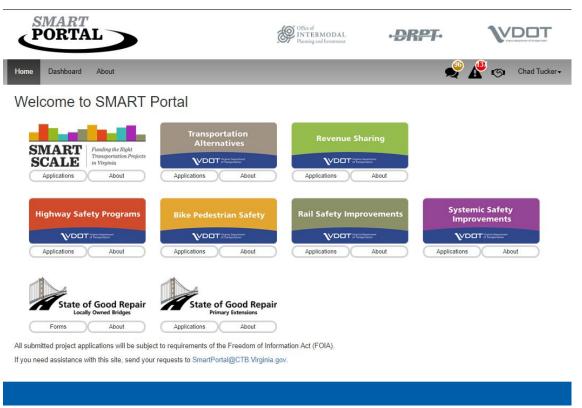
ADMIN BY	%ON TIME (OT)	#OT	\$OT	%ON BUDGET (OB)	#OB	\$OB	TOTAL PROJECTS	TOTAL BUDGET
Locally	48.0%	12	\$111.4 M	68.0%	17	\$221.7 M	25	\$340.8 M
VDOT	80.0%	44	\$1.22 B	74.5%	41	\$753.3 M	55	\$1.38 B
Total	70.0%	56	\$1.34 B	72.5%	58	\$971.0 M	80	\$1.72 B

- Milestones are being completed earlier but challenges to meeting established targets exist
- Localities awarded 48% of projects on-time (33% of award dollar value)
- VDOT awarded 80% of projects on-time (89% of the award dollar value)

Changing how we track performance

Impact of business rule changes on performance
 Project Delivery - SMART SCALE

SMART SCALE projects scheduled to award through June 30, 2019


ADMIN BY	% ON TIME (OT)	# OT	\$ OT	% ON BUDGET (OB)	# OB	\$ OB	TOTAL CONTRACTS	TOTAL AWARD
Locally	57.1%	4	\$11.8 M	57.1%	4	\$11.8 M	7	\$87.8 M
VDOT	87.0%	20	\$176.5 M	82.6%	19	\$117.1 M	23	\$222.8 M
Total	80.0%	24	\$188.4 M	76.7%	23	\$128. 9 M	30	\$310.5 M

- Localities completed 57% of projects on-time (13% of dollar value scheduled for completion)
- VDOT has completed 87% of projects on-time (79% of the dollar value scheduled for completion)

SMART Portal

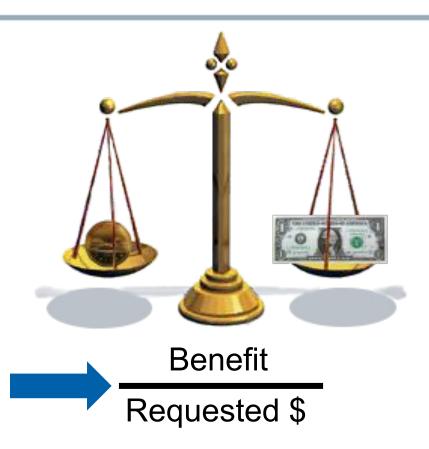
Goodbye paper, hello web-based convenience

- Portal originally developed for SMART SCALE
- Due to positive feedback the Portal was expanded to other funding programs
- Just a few years ago we were still mailing paper applications
- One-stop shop
- Portal is now a repository of useful info - even for projects not funded

Performance-Based Planning and Programming

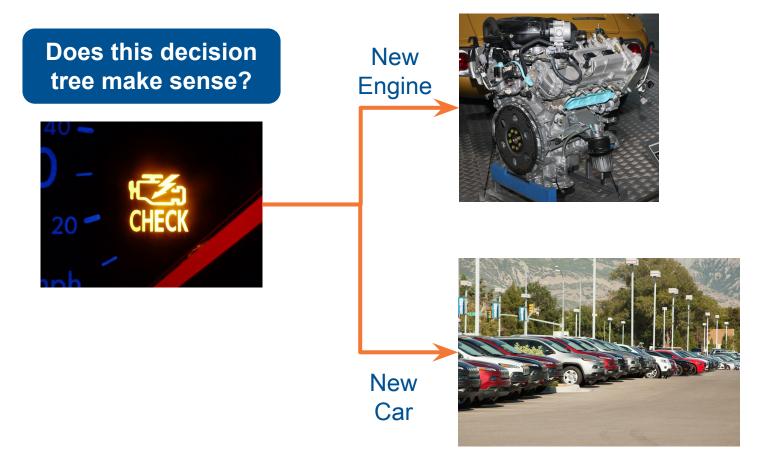
- Performance based programming
 - SMART SCALE
 - SGR
 - HSIP

Success here depends on...

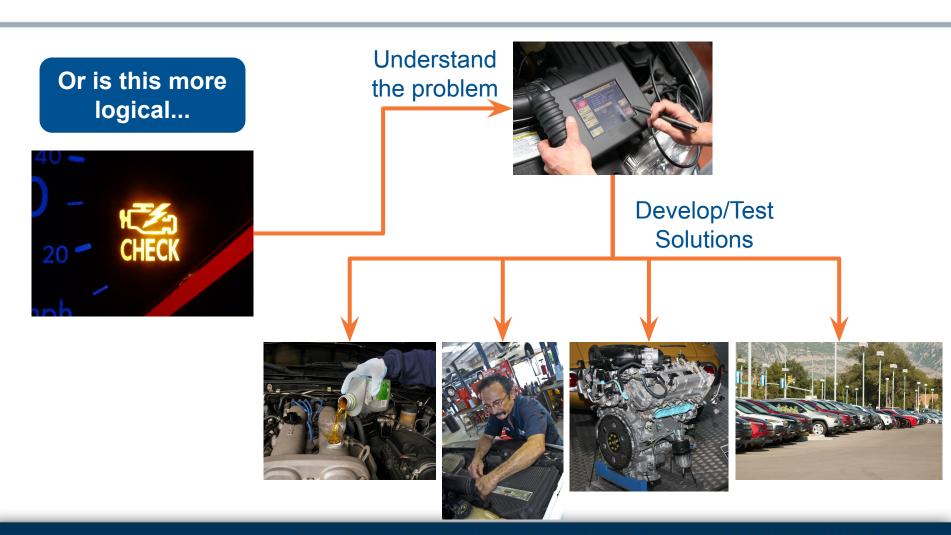

- Performance Based Planning/Project Development
- effort here

- Philosophy
- Rethinking how to solve transportation problems

Cost Matters



- SMART SCALE requires
 projects to be assessed based
 on benefits relative to cost
- Impact of this policy alone cannot be understated
- Incentive to be cost effective
- Official SMART SCALE Score is


Performance-Based Planning

Performance-Based Planning

Performance-Based Planning

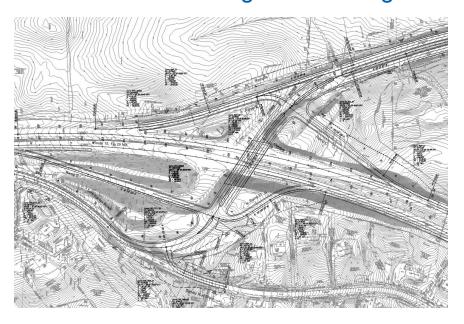
Key Principles

- Identify need to address
- Consider options to preserve and improve existing transportation system
 - Operational improvements
 - Transportation demand management
 - Innovative intersection treatments
- If these are not able to address problem then consider projects that expand the system

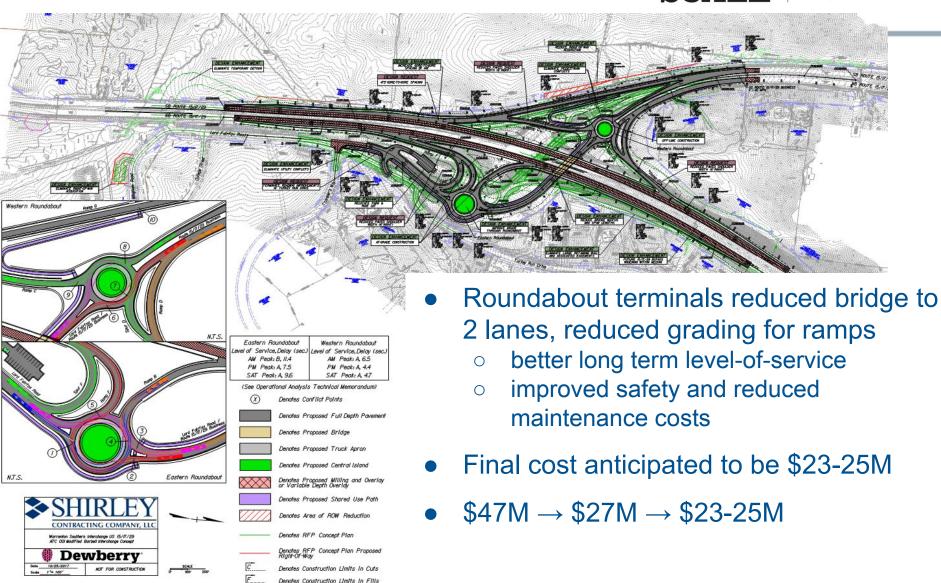
Needs → **Solutions**

Need in search of a solution as opposed to solution in search of a need

- Much more focus on process of developing and planning the solution be performance driven - to improve success in getting project funded
- More focused planning and project development is feeding better, more cost effective solutions into the project evaluation process
- Are there existing projects that need to be re-examined or re-scoped - is there a more cost-effective way to solve this problem?


Culpeper District Success Story Case Study - Warrenton Southern Interchange

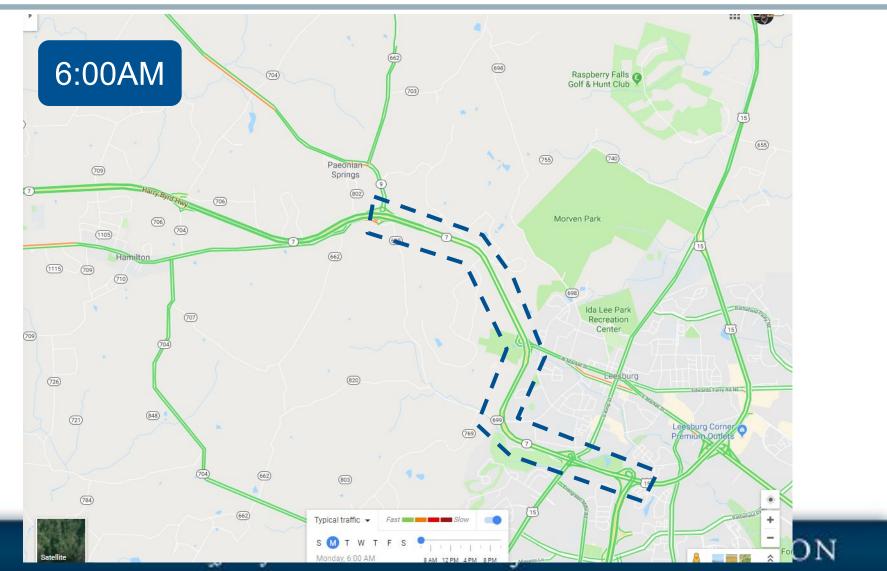
Round 1 Budget Reduction Success


- Initial project full diamond interchange with >\$45M estimate
- Significant Bridge Costs (5 Lane)
- Significant Width Ramps to accommodate volumes
- Project was selected but budget was reduced to \$27M - but still needed to maintain benefits

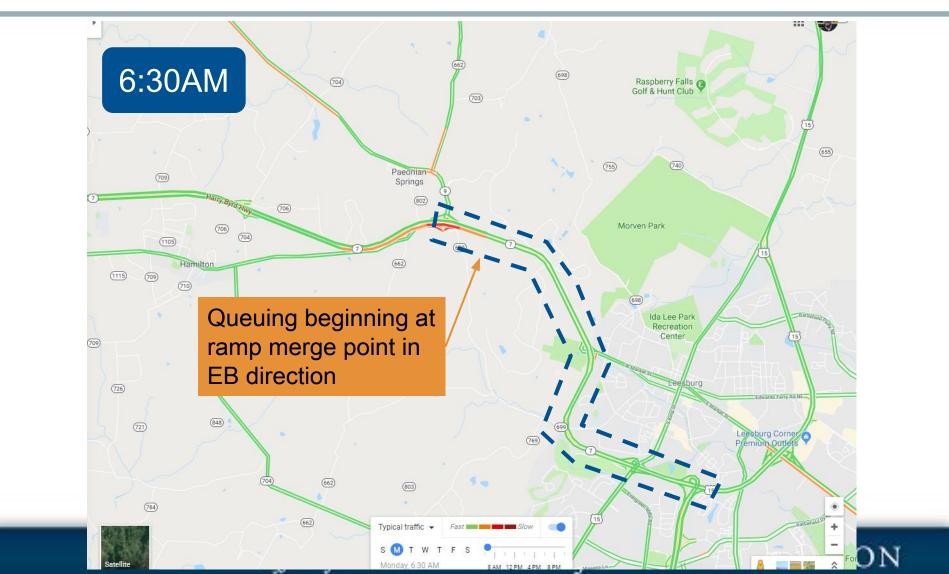
Warrenton Interchange Final Design

Culpeper District Success Story Warrenton Southern Interchange

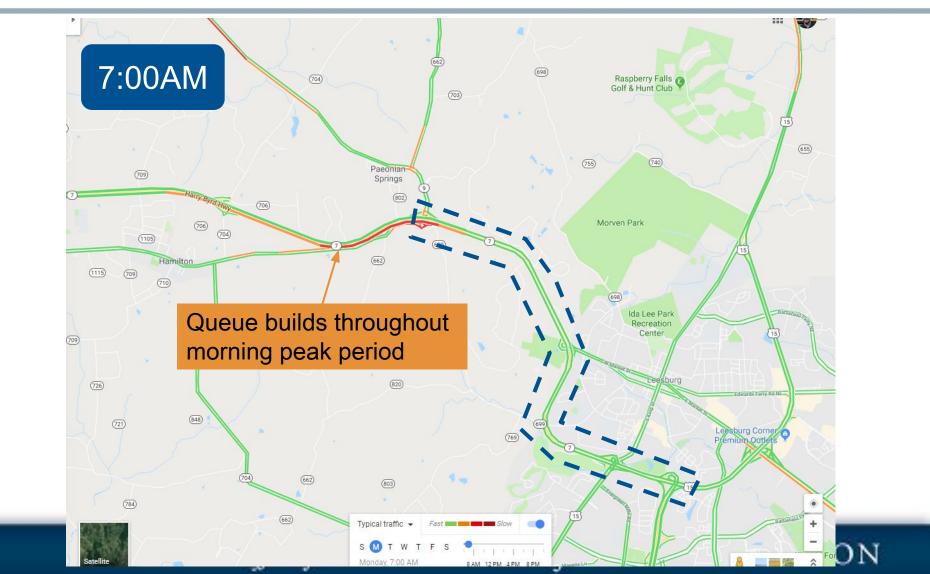
Strengthening the Planning Process

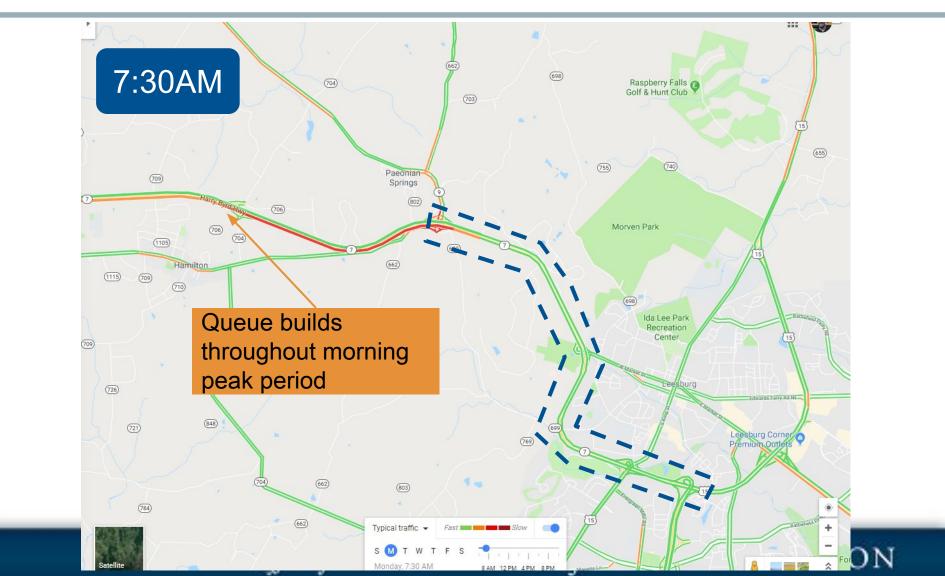

- Question: Would previous success been realized if project had been funded at full amount?
- Approach every transportation problem with goal to find the most cost-effective solutions
- Easy for local/regional decision makers or public to see innovation as:
 - Settling for a less than optimal project
 - 'Bubblegum' or 'Bandaids'
- Performance-based programming processes must be fed by performance-based planning process

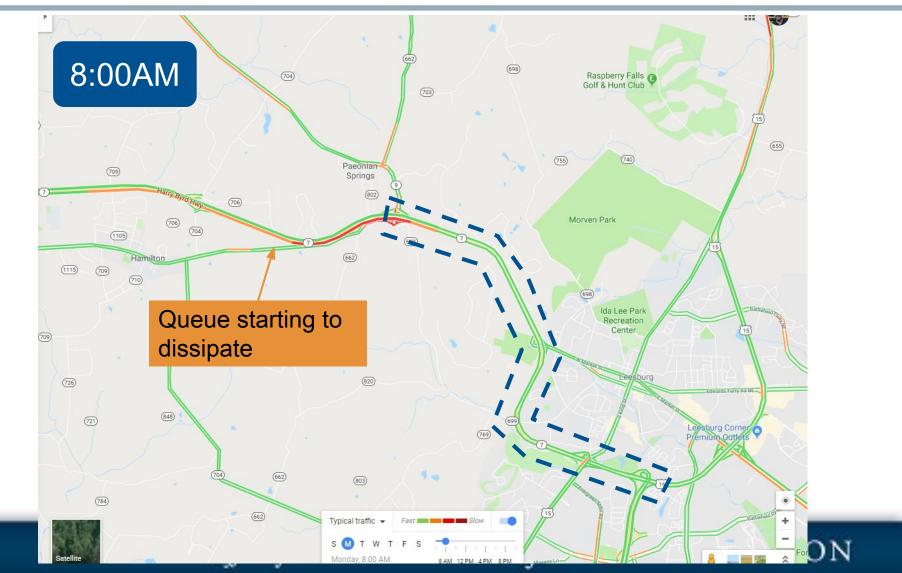
Route 7 - Route 9 to Dulles Greenway Case Study

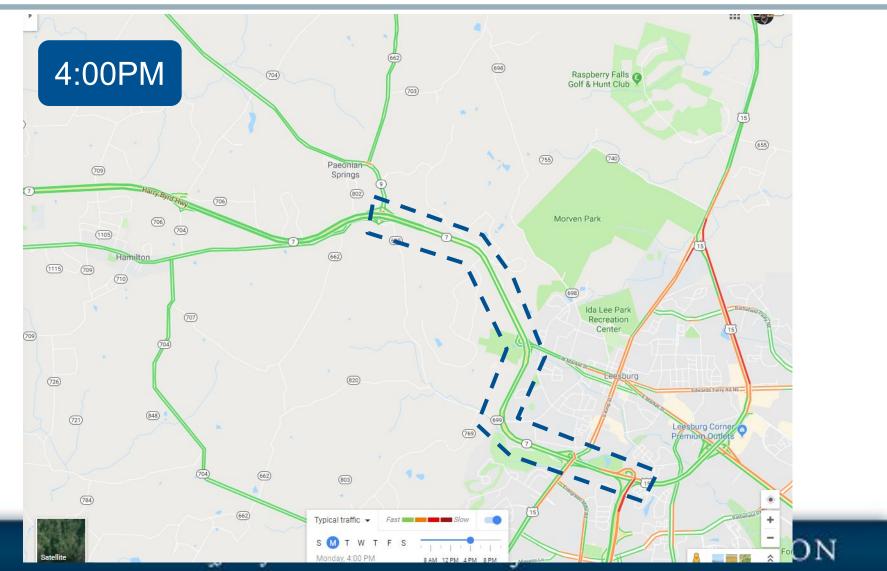


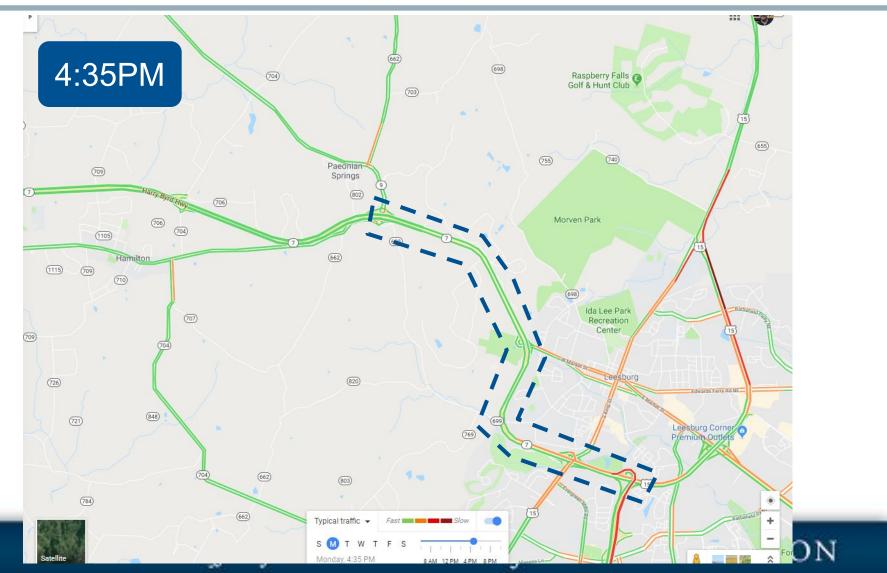
- STARS study was undertaken in 2017 to assess congestion and safety issues on Route 7 and to develop and analyze targeted improvements
- Preferred alternative from study recommended extension of acceleration lane onto EB Route 7 from NB route 9 by just under a mile
- Ramp extension would reduce friction through interchange as vehicles travel uphill and around a curve, reducing delay and mitigating sideswipe crashes
 - Also avoided costly RW and utility relocation

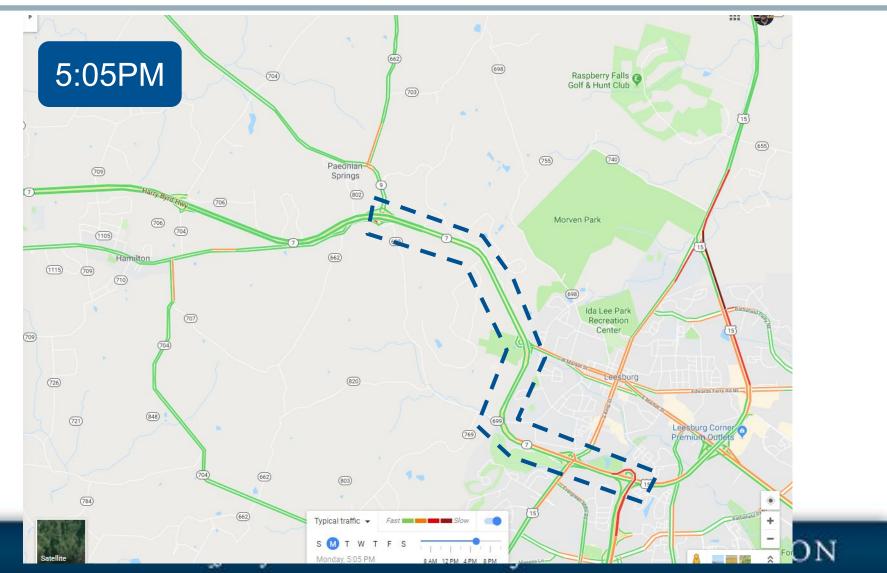


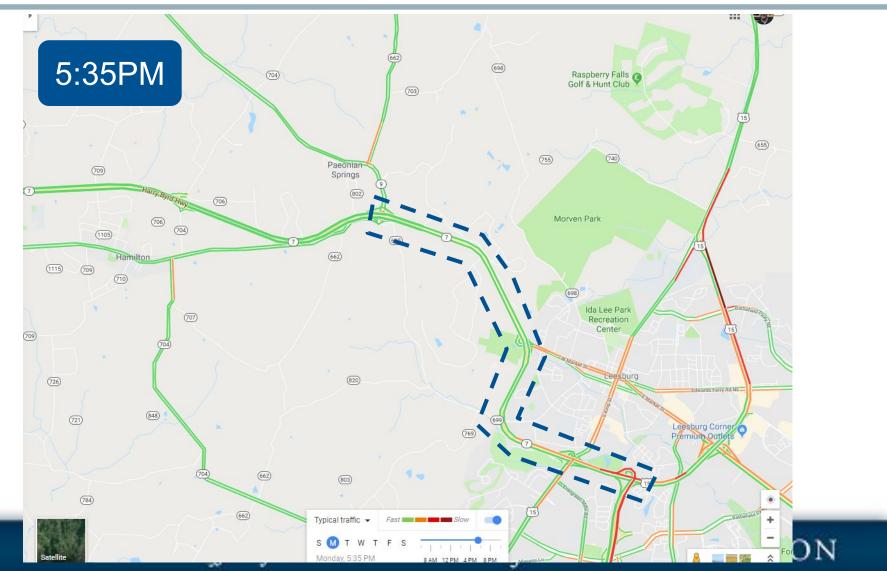


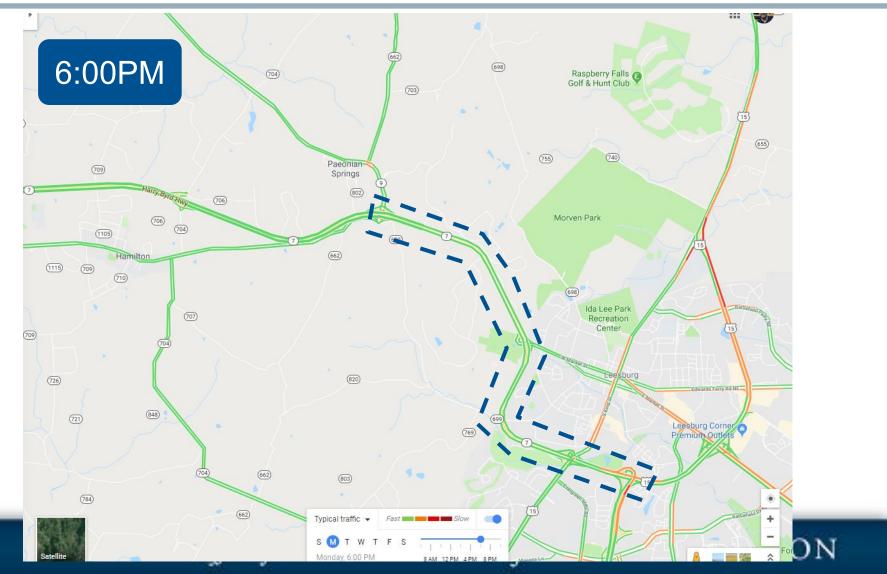










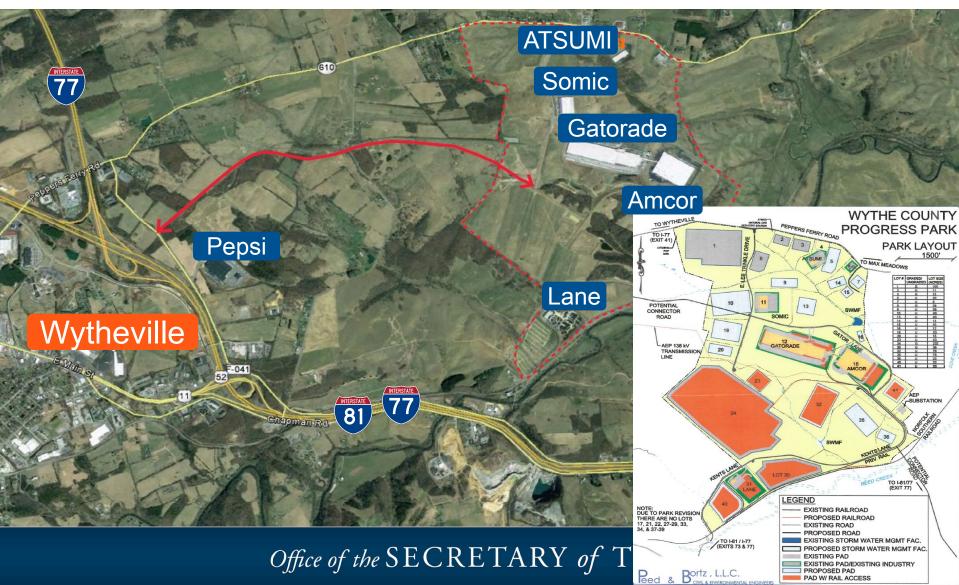


Route 7 - Route 9 to Dulles Greenway

Need/Problem	EB congestion in morning peak at the Route 9 interchange due to friction through this interchange as vehicles merge while traveling uphill and around a curve				
Solution	Round 3 Submitted Project	Recommendation from STARS Study			
Scope of Work	Widen 6.5 miles of Route 7 in both directions between Dulles GW and W Market Street	Extend acceleration lane onto Route 7 EB from Route 9 by 4850 feet			
Cost	\$127,000,000	\$16,600,000 (13%)			
Benefit Points	4.66	2.71 (58%)			
SMART SCALE SCORE	0.37	1.63 (440%)			

Implications related to Performance Based Planning

- There are instances where more cost effective solutions to a need have been identified but have not been submitted
- May want to consider mechanism for sharing such instances with impacted CTB members
- Is there opportunity for VDOT to work with localities in-between cycles to determine whether there are more cost effective solutions to a need?


If at first you don't succeed...

- Each round of SMART SCALE is unique
- Scorecard shows applicant where project was strong and weak
- State works with applicants to look for ways to improve project and project applications that were not successful
- Many examples of successful resubmissions

Bristol District Success Progress Park Connector Road

Bristol District Success Story Progress Park Connector Road

Round 2

- \$20M project
- \$17.7M SMART SCALE Request
- No economic development sites included in application
- One of lowest scoring projects statewide zero points for economic development

Round 3

- \$23.6M project
- \$10.8 Revenue Sharing leverage
- \$12.8M SMART SCALE Request
- 12 economic development sites included
 2nd highest scoring project in state for economic development site support
- Partnering (Wythe County and VDOT) early and open communications with continued education on SMART SCALE

Staunton District Success

Route 55 East/John Marshall Highway

Existing Conditions

- Poor pavement markings
- Need for signage upgrades
- Sight distance issues
- Deficient traffic control elements
- Rear-end/Fixed object off-road crashes
- 121 crashes over 5-year period
- Localized congestion at Rt
 79 intersection only

Staunton District Success

Route 55 East/John Marshall Highway

Rounds 1 and 2

- Widen to 4-lane divided
- \$24-32 million
- Benefit points less than 1
- SMART SCALE score < 0.5
- Near bottom in District rankings

Round 3

- Added targeted spot safety improvements
- \$1.6 million
- Benefit points > 4
- SMART SCALE score > 25
- 3rd highest ranked project in district

- Rumble strips
- Raised pavement markings
- Guardrail improvements
- Sign improvements
- Speed feedback signage
- Variable message boards
- Fixed object removal

Proactive Planning and Innovative Solutions

- With a regular 2-year cycle and an established process and measures SMART SCALE encourages state and local/regional partners to be more proactive in project planning/development
- State is providing performance measures and mapping data to help applicants identify locations with congestion, safety and reliability problems - locations that have better chance of scoring points
- With cost as an important variable there is incentive to look for cost effective ways to solve problems

F'burg District Success Proactive plan for 95/301 Corridors

Interstate 95

North of Richmond Area to Baltimore Current Travel Times (Uncongested)

- I-95 (entire distance)
 140 Miles, 2 hours 14 min
- I-95 → I-495 → I-95
 133 Miles, 2 hours 3 min
- I-95 → I-295 → B-W Pkwy → I-895 → I-95
 126 Miles, 2 hours 1 min
- I-95 → B-W Pkwy → I-895 → I-95
 126 Miles, 2 hours 0 min

F'burg District Success Proactive plan for Route 301 Corridor

Route 207/301

North of Richmond Area to Baltimore Current Travel Times (Uncongested)

- Rte 207 → Rte 301 → Rte 5 → I-95 → Rte 5
 → B-W Pkwy → I-895 → I-95
 129 Miles, 2 hours 16 min
- Rte 207 → Rte 301 → Rte 3 → I-97 → I-895
 → I-95
 124 Miles, 2 hours 19 min

Currently, taking the Route 207/301 alternative is only a few minutes longer than taking any one of the I-95 alternatives

F'burg District Success Proactive plan for Route 301 Corridor

- Developed an Arterial Management Plan for the corridor
 - Increased travel due to widening of Nice Bridge to 4 lanes from current 2 lanes
 - Ability to divert 95 traffic cost effective means of reducing congestion on I-95 - particularly on weekends
- Identified innovative, low-cost improvements to improve safety and decrease congestion
 - Continuous Green-T Intersections 5 locations
 - Restricted Crossing U-Turn Intersections 4 locations
 - Median U-Turn Intersections 2 locations
 - Quadrant Roadway Intersections 3 locations

Salem District Success

Project Development

- Of 10 projects in final funding scenario for Salem six originated from Arterial Management Plans (AMP) or local planning initiatives
- SMART SCALE provides an objective measure based process that benefits targeted safety and operational improvements
- Plan your work, then work your plan

Successful Planning Projects

- Route 220 at Route 619 Improvements (Route 220 AMP)
- Route 220 at Route 919 Improvements (Route 220 AMP)
- Route 220 at International Parkway Intersection (stand alone AMP)
- Route 122 at Route 636 Improvements (UDA/local planning effort)
- Route 419 & Route 220 Diverging Diamond Interchange (local planning effort with VDOT assistance)
- Route 697 at US Route 460 Intersection (Route 460 APP)

Flexibility of SMART SCALE process CTB discretion in selecting projects

Bristol - Smyth County

- US Route 11 / SR 660 Roundabout South swapped out and replaced with US Route 11 / SR 660 Roundabout North
- Project costs almost identical north roundabout would improve safety near school

Fredericksburg - City of Fredericksburg

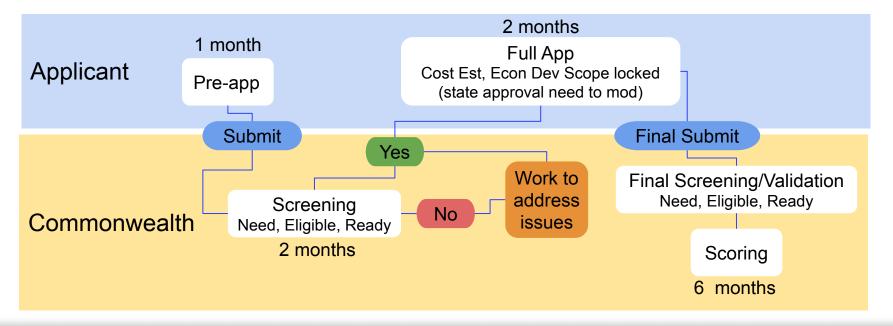
 Project to implement operational improvements along Route 3 swapped out with variation that also included ramp improvements at the I-95/Rt 3 interchange

Staunton - Interchange Improvements on I-81 at Exits 247 and 313

- Based on updated DGP/HPP amounts in Rd 3
- Supplements SGR funded bridge projects now, to add much needed capacity improvements, which provides significant future cost savings.

Programmatic Budgetary Performance

- \$2.4 Billion allocated in Rounds 1 and 2
 - Over 300 projects selected for funding
- \$77 million in cost savings based on Construction Award
- \$75 million re-allocated to cover cost increases
 - 80% of cost increases on 2 projects (Rte 7, Laskin Rd)
 - Cost increases represent only 3% of funds allocated in Rounds 1 and 2
- Reinforces need to consider programmatic success when reviewing future individual project cost increases



Application Intake, Validation and Screening

Intake Schedule

- Round 3 saw implementation of pre-application
- Very helpful, but after applicant submitted pre-app they could immediately start in full-app - often completely changing the project
- State was pre-screening a moving target for this reason we will be recommending the hand-off approach shown below:

Screening and Validation

- Per CTB policy there are three key screening decisions:
 - Does the project meet a VTrans need?
 - Corridors of Statewide Significance
 - Regional Network
 - Urban Development Area (UDA)
 - Safety
 - Is the project eligible for SMART SCALE?
 - Not allowed studies, state of good repair
 - Is the project *ready*?
 - Clear scope of work
 - Met planning and public involvement requirements

Screening and Validation

- Validation process is an accuracy and/or reasonableness review of data and information in the project application
- Lead by multi-disciplinary teams at DRPT and VDOT (District and CO)
- Focus areas
 - Scope of work and project features
 - Economic development sites
 - Cost estimate and schedule
 - Supporting documents
- Validation process helps ensure fairness and minimizes risks

Project Eligibility

- After previous rounds the Board has adopted policy language to clarify eligibility/ineligibility
- Two project areas to discuss from an eligibility standpoint:
 - Transit Maintenance Facilities
 - System-wide Investments

Transit Maintenance Facilities

- Rationale in favor of inclusion is that maintenance facilities or facility expansion may be needed to facilitate service or capacity expansion
- Concern this is a gray area and additional rules may be needed to avoid future problems
- Potential options
 - Only allow as part of a larger bus or rail capacity expansion
 - Limit eligibility to capital projects that (1) demonstrate expanded transit or rail capacity and (2) provide a direct benefit to transit passengers (station improvements, bus stop features, etc).

Area-wide Investments

- These are improvements that do not have a typical from/to and often cover a larger geographic area
- Some example from previous rounds include:
 - NOVA Regional Mobility Program- integrated, multimodal, technology-based approach to mobility and congestion management for NOVA region
 - Multi-corridor or jurisdiction-wide implementation of adaptive signal controllers
 - Countywide bus stop upgrades
- Expansive scope and multi-faceted nature of improvements present challenges for scoring and validation

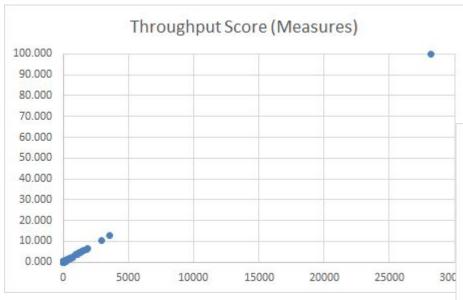
Project Readiness

- Project readiness is critical to minimize risks for major scope changes and cost overruns
- Ability to estimate benefits and score a project is dependent on clear and concise scope of work
- Key points scope should address
 - What what is being proposed
 - Where location of each improvement
 - How much measurement (length, width, #)
- Initial pre-applications often lack adequate detail
- Coordination to resolve details = time/resources

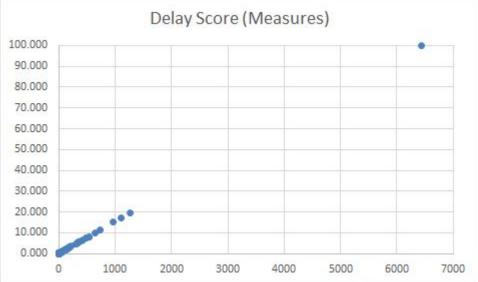
Project Readiness

- Board has strengthened incrementally each round
- Much of the strengthened policies have focused on highway investments - requiring alternative analysis and planning studies
- Similar policy provisions should be considered for major transit capital investments such as BRT and light rail
- Show planning study with alternatives considered
- Projects are included in agency's Transit Strategic/Development Plan

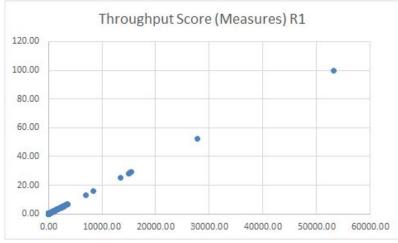
Round 3 Project Evaluation and Scoring

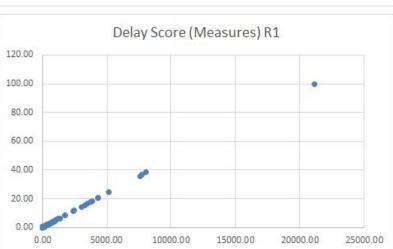


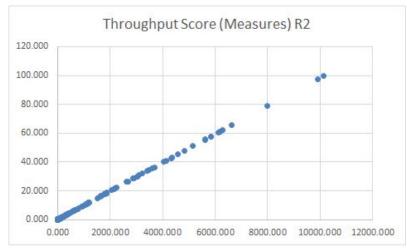
 Safety, Economic Development, and Land Use were the most influential factor areas in round 3

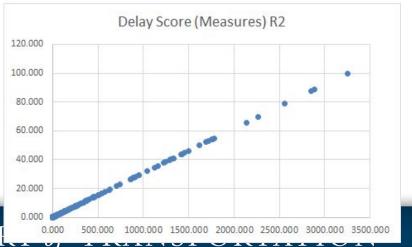

Factor Area	% of Total Benefit Points with HRBT	% of Total Benefit Points without HRBT
Congestion	9.5%	25.8%
Safety	31.7%	23.9%
Accessibility	5.2%	7.3%
Environmental	16.1%	12%
Economic Development	18.8%	17%
Land Use	18.6%	13.9%

 Why did congestion not compare similar to safety, economic development and land-use? Distribution of values in the normalization process

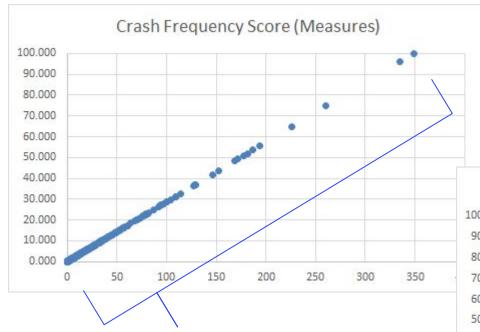


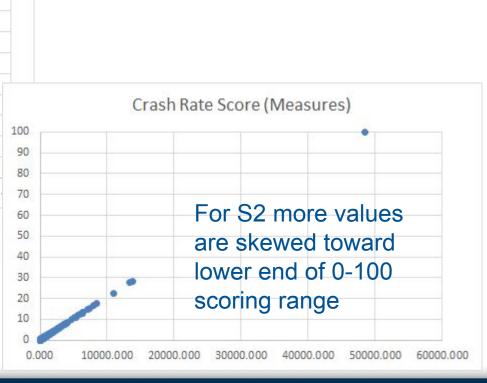

For both C1 and C2 the values are skewed toward lower end of 0-100 scoring range



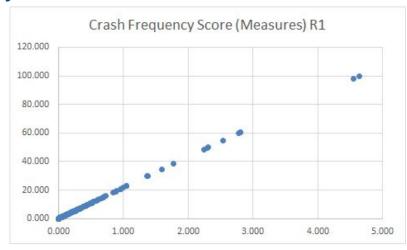


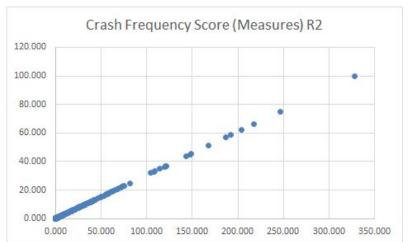
Congestion scores were better distributed in Rounds 1 and 2

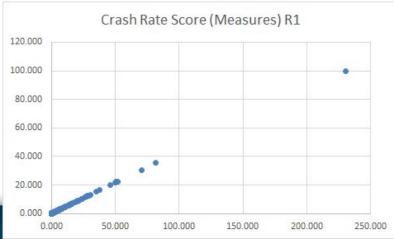


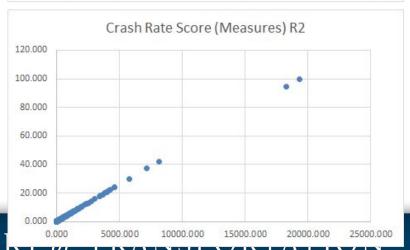


Let's look at same charts for safety measures

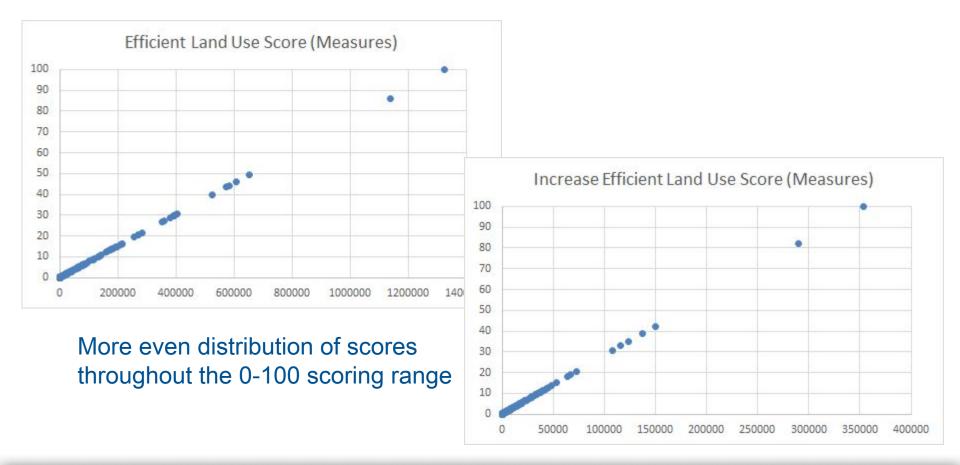


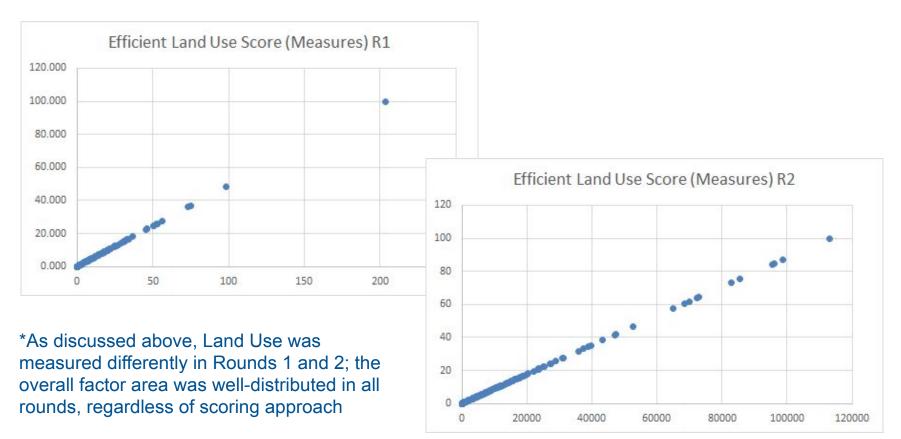

More even distribution of scores throughout the 0-100 scoring range - for this reason the S1 measure was more impactful that the S2





Safety scores were also well-distributed in Rounds 1 and 2





Let's look at same charts for land-use measures

Land Use Scores* were also well-distributed in Rounds 1 and 2

- Rounds 1 and 3 had very similar distributions of points by factor area
- Round 2 shifted much more to funding projects earning their points in Congestion and less from Safety
- In all three rounds, Land Use has contributed very significantly to project funding; this is likely because Area Types A and B receive a larger apportionment of district funding and most Area Type A and B projects earn at least some points from Land Use
- Factor areas with more evenly distributed scores tend to make up a greater proportion of all points earned

Congestion

- SMART SCALE team is looking at the following areas related to congestion
 - Accounting for weekend congestion
 - Weighting of C1 versus C2 currently 50/50
 - Current day versus 10 years in future
 - Scaling throughput
 - New tools and methods simulation models

Safety

- SMART SCALE team is looking at the following areas related to safety
 - Targeted Crash Modification Factors (CMFs)
 - Weighting of S1 versus S2 currently 50/50

SafetyCrash Modification Factors

- Crash modification factors (CMFs) calculate a projected crash reduction due to a project improvement
 - CMF of 0.80 = 20% reduction in crashes
- CMFs may be:
 - Total: apply to all crash types
 - Used in previous rounds of SMART SCALE
 - Targeted: apply to a specific crash type
 - Nighttime crashes for lighting
 - Roadway departure crashes for shoulder improvements
- Total CMFs can overestimate (more common) or underestimate project benefits based on crash patterns

Safety Crash Modification Factors

- Project 3921 Rte. 340/522 Lighting Project
 - Funded
 - Safety Score Rank = 12
 - Install street lighting along Route 340/522
- Round 3 Crash Reduction
 - 30% reduction applied to 66 crashes (1,465 equivalent property damage only [EPDO] crashes)
 - 0.30 * 1,465 = reduction in 440 EPDO crashes
- Targeted Crash Reduction
 - 53% reduction applied to 5 crashes that occurred in darkness (210 EPDO crashes)
 - 0.53 * 210 = reduction in 111 EPDO crashes

Economic Development Sites

- Policies adopted by the Board for Round 3 improved the reasonableness of economic development results
- Zoned only properties has to be adjacent to the Highest proposed transportation improvement
- In validating zoned properties and conceptual site plans we noticed several examples of high floor area ratios (FAR) - values in range of 5 were not uncommon
- Applicants uploaded zoning ordinances showing that larger FAR are allowed, but that does not mean they are likely

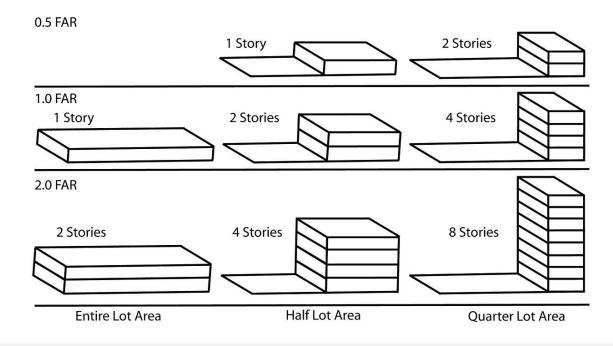
Weighting Sites based on Readiness

Approved Detailed	
S	ite Plan
Submitted Detailed	
S	ite Plan

Approved Conceptual
Site Plan

Submitted Conceptual Site Plan

Zoned Only


Lowest

Floor Area Ratio Explained

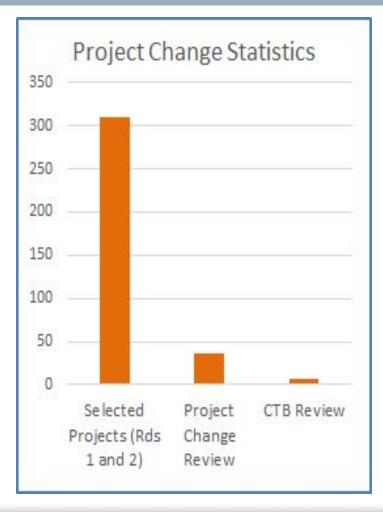
Floor area ratio is the ratio of a building's total floor area to the size of the piece of land upon which it is built

Floor Area Ratio

Economic Development Sites

- Floor Area Ratio (FAR) assumptions for zoned-only properties can be problematic
- Large industrial tracks (250+ acres) with assumed FARs of 1.0 - 250 ac = 10,890,000 sqft
 - Boeing Everett Factory 4.28M sqft
- Several tracts with assumed FARs of 5.0 or higher
- Applicants provided documentation of local ordinances allowing FAR value used - just because it is allowed does not mean it is likely
- Consideration for next round default FAR assumption for zoned only properties (.30)

Land Use



- For Round 3, the Board adopted a new method objective metric to replace subjective metric to measure a project's support for transportation efficiency of development
- L1 multiplies non-work accessibility by future density; this favors
 projects in areas that are already very dense over projects in areas
 that, though growth may be expected, existing density is low
- L2 multiplies non-work accessibility by the change in population and employment; this measure favores projects in areas where growth is expected regardless of initial density

Project Changes and Rescoring

- Over 300 projects selected in Rds 1 & 2
- 36 projects (12%) have experienced documented project change
 - Scope change or budget increase
- 7 projects (3%) have required CTB action
 - 4 budget increases
 - 2 scope modifications
 - 1 both
- Project Change Guidance was established previously and is in the process of being updated

Blind Scoring

- Randomly selected 10+% of SMART SCALE projects to reevaluate congestion and safety scoring measures
 - New for Round 3: Blind scoring was conducted by a separate external team independent from official scoring team
- Congestion and safety measures were selected due to the significant number of inputs and complexity of analysis
 - 62 total projects were randomly selected for reevaluation
 - Project analysis types and locations were distributed across each VDOT district
- Re-evaluate and compare projects independent of initial scoring
 - Accomplished with new analyst and new internal QC

Blind Scoring

Improvements to safety and congestion QC process identified during Round 2 were made to Round 3

- Held weekly team meetings to improve communication/consistency
- Incorporated traffic volume development tool into scoring tool
- Incorporated standard assumptions documentation into scoring tool

Congestion Blind Scoring Round 3 Findings

- Nearly half of projects had identical throughput and/or delay measure scores
- Larger differences in 10% QC results were attributed to the blind scoring team not having access to the same applicant data and lack of hands-on scoring experience
- Blind scoring results were run through the funding steps and it was determined the differences would not have affected the staff recommended funding scenario

Congestion Blind Scoring Recommendations for Round 4

- Improve congestion scoring training to include extensive hands-on scoring a variety of project types
- Develop methods for sharing data provided by applicants while maintaining a partition between official and blind scoring
- Develop easy-to-digest congestion scoring user guide
- Provide step-by-step guidance on volume development
- Improve workflow between congestion and bike/ped scoring
- Create clear guidelines on determining a project's Peak Hour Expansion Factor

Safety Blind Scoring Round 3 Findings

Official score was more consistent with adopted scoring methods than blind scoring three-quarters of the time

- Issue with inconsistent segment length between analysts (sensitive on smaller projects)
- Inconsistent application of CMF values- especially on non-standard designs
- Inconsistent application of new intersection and new alignment roads

Safety Recommendations for Round 4

- Provide more training focusing on
 - Understanding plans
 - Travel Demand Model inputs
 - Segmentation
 - Influence areas
 - CMF selection
- Refine CMF list to minimize changes during scoring
- Refine scoring process for: new alignment, segmentation, one directional improvements